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Lecture Two: Embedded ARM Microcontrollers 

4.2) Addressing Modes and Operands 

The addressing mode refers to the various ways a processor can specify instructions to access 

data. All instructions begin by fetching the machine instruction (op code and operand) pointed to 

by the PC. Some instructions operate completely within the processor and require no memory data 

fetches. For example, the ADD R1, R2 instruction performs R1+R2 and stores the sum back into 

R1. If the data is found in the instruction itself, like MOV R0, #1 , the instruction uses immediate 

addressing mode. A register that contains the address or the location of the data is called a pointer 

or index register. Indexed addressing mode uses a register pointer to access memory. The 

addressing mode that uses the PC as the pointer is called PC-relative addressing mode. It is used 

for branching, for calling functions, and accessing constant data stored in ROM.  

The MOV instruction will move data within the processor without accessing memory.  

The LDR instruction will read a 32-bit word from memory and place the data in a register.  

With PC-relative addressing, the assembler automatically calculates the correct PC offset. 

Register. Most instructions operate on the registers. In general, data flows towards the op code 

(right to left). In other words, the register closest to the op code gets the result of the operation. In 

each of these instructions, the result goes into R2. 

MOV R2, #100    ; R2=100,       immediate addressing 

LDR R2, [R1]      ; R2= value pointed to by R1 

ADD R2, R0         ; R2= R2+R0 

ADD R2, R0, R1   ; R2= R0+R1 

Register list. The stack push and stack pop instructions can operate on one register or on a list of 

registers. SP is the same as R13, LR is the same as R14, and PC is the same as R15. 

PUSH {LR}                 ; save LR on stack 

POP {LR}                    ; remove from stack and place in LR 

PUSH {R1-R3, LR}     ; save R1, R2, R3 and link register 

POP {R1-R3, PC}        ; restore R1, R2, R3 and PC 

A) Immediate addressing. With immediate addressing mode, the data itself is contained in the 

instruction. Once the instruction is fetched no additional memory access cycles are required to get 

the data. Notice the number 100 (0x64) is embedded in the machine code of the instruction shown 
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in Figure 2.10. Immediate addressing is only used to get, load, or read data. It will never be used 

with an instruction that stores to memory. 

MOV R0, #100           ; R0=100, immediate addressing 

 
Figure 2.10. An example of immediate addressing mode, data is in the instruction. 

 

B) Indexed addressing. With indexed addressing mode, the data is in memory and a register 

will contain a pointer to the data. Once the instruction is fetched, one or more additional memory 

access cycles are required to read or write the data. In these examples, R1 points to RAM.  

LDR R0, [R1]                      ; R0= value pointed to by R1 

LDR R0, [R1,#4]                 ; R0= word pointed to by R1+4 

LDR R0, [R1, #4]!               ; first R1=R1+4, then R0= word pointed to by R1 

LDR R0, [R1], #4                ; R0= word pointed to by R1, then R1=R1+4 

LDR R0, [R1, R2]               ; R0= word pointed to by R1+R2 

LDR R0, [R1, R2, LSL #2] ; R0= word pointed to by R1+4*R2 

In Figure 2.11, R1 points to RAM, the instruction LDR R0,[R1] will read the 32-bit value pointed 

to by R1 and place it in R0. R1 could be pointing to any valid object in the memory map (i.e., 

RAM, ROM, or I/O), and R1 is not modified by this instruction. 

 
Figure 2.11. An example of indexed addressing mode, data is in memory. 

In Figure 2.12, R1 points to RAM, the instruction LDR R0,[R1,#4] will read the 32-bit value 

pointed to by R1+4 and place it in R0. Even though the memory address is calculated as R1+4, the 

Register R1 itself is not modified by this instruction. 

 
Figure 2.12. An example of indexed addressing mode with offset, data is in memory. 
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C) PC-relative addressing. PC-relative addressing is indexed addressing mode using the PC 

as the pointer. The PC always points to the instruction that will be fetched next, so changing the 

PC will cause the program to branch. A simple example of PC-relative addressing is the 

unconditional branch. In assembly language, we simply specify the label to which we wish to 

jump, and the assembler encodes the instruction with the appropriate PC-relative offset. 

B Location        ; jump to Location, using PC-relative addressing 

The same addressing mode is used for a function call. Upon executing the BL instruction, the 

return address is saved in the link register (LR). In assembly language, we simply specify the label 

defining the start of the function, and the assembler creates the appropriate PC-relative offset. 

BL Subroutine; call Subroutine, using PC-relative addressing 

Typically, it takes two instructions to access data in RAM or I/O. The first instruction uses PC 

relative addressing to create a pointer to the object, and the second instruction accesses the memory 

using the pointer. We can use the = something operand for any symbol defined by our program. 

In this case Count is the label defining a 32-bit variable in RAM. 

LDR R1, =Count    ; R1 points to variable Count, using PC-relative 

LDR R0, [R1]         ; R0= value pointed to by R1 

The operation caused by the above two LDR instructions is illustrated in Figure 2.13. Assume a 

32-bit variable Count is located in the data space at RAM address 0x2000.0000.  

First, LDR R1, =Count makes R1 equal to 0x2000.0000. I.e., R1 points to Count. The assembler 

places a constant 0x2000.0000 in code space and translates the =Count into the correct PC-relative 

access to the constant (e.g., LDR R1, [PC, #28]). In this case, the constant 0x2000.0000, the 

address of Count, will be located at PC+28. Second, the LDR R0, [R1] instruction will 

dereference this pointer, bringing the 32-bit contents at location 0x2000.0000 into R0. Since 

Count is located at 0x2000.0000, these two instructions will read the value of Count into R0. 

 
Figure 2.13. Indexed addressing using R1 as a register pointer to access memory. Data is moved 

into R0. Code space is where we place programs and data space is where we place variables.  

 

Flexible second operand <op2>. Many instructions have a flexible second operand, shown 

as <op2> in the descriptions of the instruction. <op2> can be a constant or a register with optional 

shift. The flexible second operand can be a constant in the form #constant 

ADD Rd, Rn, #constant      ; Rd = Rn + constant  

We can also specify a flexible second operand in the form Rm {, shift} . If Rd is missing, Rn is 

also the destination. For example: 

ADD Rd, Rn, Rm {, shift}   ; Rd = Rn+Rm 

ADD Rn, Rm {, shift}          ; Rn = Rn+Rm 

where Rm is the register holding the data for the second operand, and shift is an optional shift to 

be applied to Rm . The optional shift can be one of these five formats: 
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ASR #n Arithmetic (signed) shift right n bits, 1 ≤ n ≤ 32. 

LSL #n Logical (unsigned) shift left n bits, 1 ≤ n ≤ 31. 

LSR #n Logical (unsigned) shift right n bits, 1 ≤ n ≤ 32. 

ROR #n Rotate right n bits, 1 ≤ n ≤ 31. 

RRX Rotate right one bit, with extend. 

If we omit the shift, or specify LSL #0 , the value of the flexible second operand is Rm . If we 

specify a shift, the shift is applied to the value in Rm , and the resulting 32-bit value is used by the 

instruction. However, the contents in the register Rm remain unchanged. For example, 

ADD R0,R1,LSL #4       ; R0 = R0 + R1*16 (R1 unchanged) 

ADD R0,R1,R2,ASR #4 ; signed R0 = R1 + R2/16 (R2 unchanged) 

4.3) Memory Access Instructions 

This section presents mechanisms to read from and write to memory. As illustrated in Figure 2.13, 

to access memory we first establish a pointer to the object, then use indexed addressing. Usually 

code space is in ROM, but it is possible to assign code space to RAM. Data space is where we 

place variables. There are four types of memory objects, and typically we use a specific register to 

access them.  

Memory object type           Register               Example operand 

Constants in code space           PC                     =Constant [PC, #28] 

Local variables on the stack     SP                      [SP, #0x04] 

Global variables in RAM          R0 – R12           [R0] 

I/O ports                                    R0 – R12           [R0] 

The ADR instruction uses PC-relative addressing and is a handy way to generate a pointer to a 

constant in code space or an address within the program. The general form for ADR is 

ADR{cond} Rd, label 

where {cond} is an optional condition (see Table 2.2), Rd is the destination register, and label is 

a label within the code space within the range of -4095 to +4095 from the address in the PC. In 

reality, the assembler will generate an ADD or SUB instruction to calculate the desired address 

using an offset to the PC. DCD is an assembler directive that defines a 32-bit constant. We use it 

to create constants in code space (ROM). 

 In the following example, after executing the ADR instruction, R5 points to Pi , and after 

executing the LDR instruction, R6 contains the data at Pi . 

Access  ADR R5, Pi      ;R5 points to Pi 

              LDR R6,[R5]              ;R6 = 314159 

               ... 

              BX LR 

              Pi DCD 314159 
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We use the LDR instruction to load data from memory into a register. There is a special form of 

LDR which instructs the assembler to load a constant or address into a register. This is a “pseudo 

instruction” and the assembler will output suitable instructions to generate the specified value in 

the register. This form for LDR is 

LDR{cond} Rd, =number 

LDR{cond} Rd, =label 

where {cond} is an optional condition (see Table 2.2), Rd is the destination register, and label is 

a label anywhere in memory. Figure 2.13 illustrates how to create a pointer to a variable in RAM. 

A similar approach can be used to access I/O ports. On the TM4C family, Port A exists at address 

0x4000.43FC. After executing the first LDR instruction, R5 equals 0x4000.43FC, which is a 

pointer to Port A, and after executing the second LDR instruction, R6 contains the value at Port A 

at the time it was read. 

Input LDR R5, =0x400043FC      ; R5=0x400043FC, R5 points to Port A 

           LDR R6, [R5]                                 ; Input from Port A into R6 

           ; ... 

           BX LR 

We use the LDR instruction to load data from RAM to a register and the STR instruction to store 

data from a register to RAM. In most cases, it creates a copy of the data and places the copy at the 

new location. In other words, since the original data still exists in the previous location, there are 

now two copies of the information. The exception to this memory-access-creates-two-copies-rule 

is a stack pop. When we pop data from the stack, it no longer exists on the stack leaving us just 

one copy. For example in Figure 2.13, the instruction LDR R0,[R1] loads the contents of the 

variable Count into R0. At this point, there are two copies of the data, the original in RAM and 

the copy in R0. If we next add 1 to R0, the two copies have different values.  

 
Table 2.3. Optional modifier to specify data type when accessing memory. 
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Most of the addressing modes listed in the previous section can be used with load and store. The 

following lists the general form for some of the load and store instructions 

LDR{type}{cond} Rd, [Rn] ; load memory at [Rn] to Rd 

STR{type}{cond} Rt, [Rn] ; store Rt to memory at [Rn] 

LDR{type}{cond} Rd, [Rn, #n] ; load memory at [Rn+n] to Rd 

STR{type}{cond} Rt, [Rn, #n] ; store Rt to memory [Rn+n] 

LDR{type}{cond} Rd, [Rn,Rm,LSL #n] ; load memory at [Rn+Rm<<n] to Rd 

STR{type}{cond} Rt, [Rn,Rm,LSL #n] ; store Rt to memory [Rn+Rm<<n] 

The move instructions get their data from the machine instruction or from within the processor and 

do not require additional memory access instructions. 

MOV{S}{cond} Rd, <op2> ; set Rd equal to the value specified by op2 

MOV{cond} Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535 

MVN{S}{cond} Rd, <op2> ; set Rd equal to the -value specified by op2 

 
4.4) Logical Operations 

Software uses logical and shift operations to combine information, to extract information and to 

test information. A unary operation produces its result given a single input parameter. Examples 

of unary operations include negate, complement, increment, and decrement. In discrete digital 

logic, the complement operation is called a NOT gate as shown in Table 2.4. 

 

Table 2.4. Logical complement. 

When designing digital logic we use gates, such as NOT AND OR, to convert individual input 

signals into individual output signals. However, when writing software using logic functions, we 

take two 32-bit numbers and perform 32 logic operations at the same time in a bit-wise fashion 

yielding one 32-bit result. Boolean Logic has two states: true and false. The false is 0, and the true 

state is any nonzero value. A binary operation produces a single result given two inputs. The 

logical and (&) operation yields a true result if both input parameters are true. The logical or (|) 

operation yields a true result if either input parameter is true. The exclusive or (^) operation yields 

a true result if exactly one input parameter is true. The logical operators are summarized in Table 

2.5. The logical instructions on the ARM Cortex-M processor take two inputs, one from a register 
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and the other from the flexible second operand. These operations are performed in a bit-wise 

fashion on two 32-bit input parameters yielding one 32-bit output result. The result is stored into 

the destination register. For example, the calculation r=m&n means each bit is calculated 

separately, r31=m31&n31, r30=m30&n30, …, r0=m0&n0. 

In C, when we write r=m&n; r=m|n; r=m^n; the logical operation occurs in a bit-wise fashion 

as described by Table 2.5. However, in C we define the Boolean functions as r=m&&n; r=m||n; 

For Booleans, the operation occurs in a word-wise fashion. For example, r=m&&n; means r will 

become zero if either m is zero or n is zero. Conversely, r will become 1 if both m is nonzero and 

n is nonzero. 

 

Table 2.5. Logical operations performed by the Cortex -M processor. 

All instructions place the result into the destination register Rd. If Rd is omitted, the result is 

placed into Rn, which is the register holding the first operand. If the optional S suffix is specified, 

the N and Z condition code bits are updated on the result of the operation. In the comments next 

to the instructions below, we use op2 to represent the 32-bit value generated by the flexible second 

operand, <op2>. Some flexible second operands may affect the C bit. These logical instructions 

will leave the V bit unchanged. 

AND{S}{cond} {Rd,} Rn, <op2> ;Rd=Rn&op2 

ORR{S}{cond} {Rd,} Rn, <op2> ;Rd=Rn|op2 

EOR{S}{cond} {Rd,} Rn, <op2> ;Rd=Rn^op2 

BIC{S}{cond} {Rd,} Rn, <op2> ;Rd=Rn&(~op2) 

ORN{S}{cond} {Rd,} Rn, <op2> ;Rd=Rn|(~op2) 

For example, assume R1 is 0x12345678 and R2 is 0x87654321. The ORR R0,R1,R2 will perform 

this operation, placing the 0x97755779 result in R0. 

R1    0001 0010 0011 0100 0101 0110 0111 1000 

R2    1000 0111 0110 0101 0100 0011 0010 0001 

ORR 1001 0111 0111 0101 0101 0111 0111 1001 
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Example 2.1: Write code to set bit 0 in a 32-bit variable called N. 

Solution: First, we perform a 32-bit read, bringing N into Register R0. Second we perform a 

logical OR setting bit 0, and lastly we store the result back into N. 

 

Program 2.1. Example code showing a logical OR. 

Observation: We use the logical OR to make bits become one, and we use the logical AND to 

make bits become zero. 

4.5) Shift Operations 

Like programming in C, the assembly shift instructions take two input parameters and yield one 

output result. In C, the left shift operator is << and the right shift operator is >>. E.g., to left shift 

the value in M by N bits and store the result in R we execute: R = M<<N. Similarly, to right shift 

the value in M by N bits and store the result in R we execute: R = M>>N. 

The logical shift right (LSR) is similar to an unsigned divide by 2n, where n is the number of bits 

shifted as shown in Figure 2.14. A zero is shifted into the most significant position, and the carry 

flag will hold the last bit shifted out. The right shift operations do not round. For example, a right 

shift by 3 bits is similar to divide by 8. However, 15 right-shifted three times (15>>3) is 1.  

The arithmetic shift right (ASR) is similar to a signed divide by 2n. Notice that the sign bit is 

preserved, and the carry flag will hold the last bit shifted out. This right shift operation also does 

not round. Again, a right shift by 3 bits is similar to divide by 8. However, -9 right-shifted three 

times (-9>>3) is -2. 

The logical shift left (LSL) operation works for both unsigned and signed multiply by 2n. A zero 

is shifted into the least significant position, and the carry bit will contain the last bit that was shifted 

out.  

The two rotate operations can be used to create multiple-word shift functions. There is no rotate 

left instruction, because a rotate left 10 bits is the same as rotate right 22 bits. All shift instructions 

place the result into the destination register Rd . Rm is the register holding the value to be shifted. 

The number of bits to shift is either in register Rs , or specified as a constant n . If the optional S 

suffix is specified, the N and Z condition code bits are updated on the result of the operation. The 
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C bit is the carry out after the shift as shown in Figure 2.14. These shift instructions will leave the 

V bit unchanged. 

Observation: Use logic shift for unsigned numbers and arithmetic shifts for signed numbers. 

 

Figure 2.14. Shift operations. 

LSR{S}{cond} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned) 

LSR{S}{cond} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned) 

ASR{S}{cond} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed) 

ASR{S}{cond} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed) 

LSL{S}{cond} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned) 

LSL{S}{cond} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned) 

ROR{S}{cond} Rd, Rm, Rs ; rotate right 

ROR{S}{cond} Rd, Rm, #n ; rotate right 

RXX{S}{cond} Rd, Rm ; rotate right 1 bit with extension 

Example 2.2: Write code that reads from variable N, shifts right twice, and stores the result in 

variable M. Both variables are 32-bit unsigned. 

Solution: First, we perform a 32-bit read, bringing N into Register R1. Second we divide by 4 

using a shift right operation, and lastly we store the result into M. Since the value gets smaller, no 

overflow can occur. If the variables were signed, then the LSR instruction should be replaced with 

an ASR instruction. In C, the shift right operator is >> 
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Program 3.2. Example code showing a right shift. 

Example 3.3: Assume we have three 8-bit variables named High , Low , and Result . High and 

Low have 4 bits of data; each is a number from 0 to 15. Take these two 4-bit nibbles and combine 

them into one 8-bit value, storing the combination in Result . 

Solution: The solution uses the shift operation to move the bits into position, then it uses the 

logical OR operation to combine the two parts into one number. We will assume both High and 

Low are bounded within the range of 0 to 15. The expression High<<4 will perform four logical 

shift lefts. Registers R2, R3, and R4 point to (contain the address of) variables. 

 

Program 2.3. Example code showing a left shift. 

To illustrate how the above program works, let 0 0 0 0 h3 h2 h1 h0be the value of High , and let 0 

0 0 0 l3 l2 l1 l0be the value of Low . The LDRB R1,[R2] instruction brings the 8-bit High into 

Register R1. 

The LSL R0,R1,#4 instruction moves the High into bit positions 4-7 of Register R0. The LDRB 

R1, [R3] instruction brings the 8-bit Low into Register R1. Finally, the ORR R0,R0,R1 

instruction combines High and Low , and the STRB R0,[R4] instruction stores the combination 

into Result . 

0 0 0 0 h3 h2 h1 h0 value of High 

h3 h2 h1 h0 0 0 0 0 after four LSL s 

0 0 0 0 l3 l2 l1 l0 value of Low 

h3 h2 h1 h0 l3 l2 l1 l0 result of the ORR instruction 


